Using Integral Transforms to Estimate Higher Order Derivatives
نویسنده
چکیده
When doing error analysis for numerical quadrature, achieving good uniform bounds on higher order derivatives of the integrand is paramount. As undergraduates become increasingly adept with programmable calculators, numerical integration schemes such as Simpson’s Rule and the Trapezoidal Rule take on a new relevance. Although it may be a rare calculus class that dwells overmuch on error bounds for such schemes, this may be due as much to the perceived paucity of interesting examples for which decent error bounds are readily achievable as to the general weakness in algebraic skills necessary for the requisite understanding of inequalities. The purpose of this article, therefore, is to offer some interesting, non-trivial examples for which the error analysis, if not elegant, is at least simple enough to carry out in the classroom.
منابع مشابه
Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method
In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...
متن کاملSome new results using Hadamard fractional integral
Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملSingular integrals, scale-space and wavelet transforms
The Gaussian scale-space is a singular integral convolution operator with scaled Gaussian kernel. For a large class of singular integral convolution operators with differentiable kernels, a general method for constructing mother wavelets for continuous wavelet transforms is developed, and Calderón type inversion formulas, in both integral and semi-discrete forms, are derived for functions in L ...
متن کاملStability Analysis and Fractional Order Controller Design for Control System
In this paper, a new approach to stability for fractional order control system is proposed. Here a dynamic system whose behavior can be modeled by means of differential equations involving fractional derivatives. Applying Laplace transforms to such equations, and assuming zero initial conditions, causes transfer functions with no integer powers of the Laplace transform variable s to appear. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American Mathematical Monthly
دوره 107 شماره
صفحات -
تاریخ انتشار 2000